Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction.

نویسندگان

  • Jochen P Müller
  • Salomé Mielke
  • Achim Löf
  • Tobias Obser
  • Christof Beer
  • Linda K Bruetzel
  • Diana A Pippig
  • Willem Vanderlinden
  • Jan Lipfert
  • Reinhard Schneppenheim
  • Martin Benoit
چکیده

The large plasma glycoprotein von Willebrand factor (VWF) senses hydrodynamic forces in the bloodstream and responds to elevated forces with abrupt elongation, thereby increasing its adhesiveness to platelets and collagen. Remarkably, forces on VWF are elevated at sites of vascular injury, where VWF's hemostatic potential is important to mediate platelet aggregation and to recruit platelets to the subendothelial layer. Adversely, elevated forces in stenosed vessels lead to an increased risk of VWF-mediated thrombosis. To dissect the remarkable force-sensing ability of VWF, we have performed atomic force microscopy (AFM)-based single-molecule force measurements on dimers, the smallest repeating subunits of VWF multimers. We have identified a strong intermonomer interaction that involves the D4 domain and critically depends on the presence of divalent ions, consistent with results from small-angle X-ray scattering (SAXS). Dissociation of this strong interaction occurred at forces above [Formula: see text]50 pN and provided [Formula: see text]80 nm of additional length to the elongation of dimers. Corroborated by the static conformation of VWF, visualized by AFM imaging, we estimate that in VWF multimers approximately one-half of the constituent dimers are firmly closed via the strong intermonomer interaction. As firmly closed dimers markedly shorten VWF's effective length contributing to force sensing, they can be expected to tune VWF's sensitivity to hydrodynamic flow in the blood and to thereby significantly affect VWF's function in hemostasis and thrombosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency Assessment of the H817Q (2451T→A) Variant of von Willebrand Gene in Individuals without Hemorrhagic Signs

Abstract Background and Aims:‎ Von Willebrand disease is a bleeding disorder caused by quantitative or functional defects in von Willebrand factor. The disease is found in up to 1 percent of the population. The most common symptom is mucocutaneous bleeding. Recently, studies conducted on healthy people showed that the H817Q mutation that previously known to cause von Willebrand...

متن کامل

Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function.

The large multimeric plasma glycoprotein von Willebrand factor (VWF) is essential for primary hemostasis by recruiting platelets to sites of vascular injury. VWF multimers respond to elevated hydrodynamic forces by elongation, thereby increasing their adhesiveness to platelets. Thus, the activation of VWF is force-induced, as is its inactivation. Due to these attributes, VWF is a highly interes...

متن کامل

Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions.

Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage. However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain unknown. In this study, we d...

متن کامل

Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor.

The lengths of von Willebrand factor (VWF) concatamers correlate with hemostatic potency. After secretion in plasma, length is regulated by hydrodynamic shear force-dependent unfolding of the A2 domain, which is then cleaved by a specific protease. The 1.9-A crystal structure of the A2 domain demonstrates evolutionary adaptations to this shear sensor function. Unique among VWF A (VWA) domains, ...

متن کامل

Calcium modulates force sensing by the von Willebrand factor A2 domain

von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. VWF potency critically depends on multimer size, which is regulated by a feedback mechanism involving shear-induced unfolding of the VWF-A2 domain and cleavage by the metalloprotease ADAMTS-13. Here we report crystallographic and single-molecule optical tweezers data on VWF-A2 providing mechanistic insi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2016